Novel Rao-Blackwellized Particle Filter for Mobile Robot SLAM Using Monocular Vision
نویسندگان
چکیده
This paper presents the novel Rao-Blackwellised particle filter (RBPF) for mobile robot simultaneous localization and mapping (SLAM) using monocular vision. The particle filter is combined with unscented Kalman filter (UKF) to extending the path posterior by sampling new poses that integrate the current observation which drastically reduces the uncertainty about the robot pose. The landmark position estimation and update is also implemented through UKF. Furthermore, the number of resampling steps is determined adaptively, which seriously reduces the particle depletion problem, and introducing the evolution strategies (ES) for avoiding particle impoverishment. The 3D natural point landmarks are structured with matching Scale Invariant Feature Transform (SIFT) feature pairs. The matching for multi-dimension SIFT features is implemented with a KD-Tree in the time cost of O(log2). Experiment results on real robot in our indoor environment show the advantages of our methods over previous approaches. Keywords—Mobile robot, simultaneous localization and mapping, Rao-Blackwellised particle filter, evolution strategies, scale invariant feature transform.
منابع مشابه
A Velocity-Based Rao-Blackwellized Particle Filter Approach to Monocular vSLAM
This paper presents a modified Rao-Blackwellized Particle Filter (RBPF) approach for the bearing-only monocular SLAM problem. While FastSLAM 2.0 is known to be one of the most computationally efficient SLAM approaches; it is not applicable to certain formulations of the SLAM problem in which some of the states are not explicitly expressed in the measurement equation. This constraint impacts the...
متن کاملNovel Mobile Robot Simultaneous Loclization and Mapping Using Rao-Blackwellised Particle Filter
This paper presents the novel method of mobile robot simultaneous localization and mapping (SLAM), which is implemented by using the Rao-Blackwellised particle filter (RBPF) for monocular vision-based autonomous robot in unknown indoor environment. The particle filter is combined with unscented Kalman filter (UKF) to extending the path posterior by sampling new poses that integrate the current ...
متن کاملLook-ahead Proposals for Robust Grid-based SLAM with Rao-Blackwellized Particle Filters
Simultaneous Localization and Mapping (SLAM) is one of the classical problems in mobile robotics. The task is to build a map of the environment using on-board sensors while at the same time localizing the robot relative to this map. Rao-Blackwellized particle filters have emerged as a powerful technique for solving the SLAM problem in a wide variety of environments. It is a well-known fact for ...
متن کاملFast and accurate SLAM with Rao-Blackwellized particle filters
Rao-Blackwellized particle filters have become a popular tool to solve the simultaneous localization and mapping problem. This technique applies a particle filter in which each particle carries an individual map of the environment. Accordingly, a key issue is to reduce the number of particles and/or to make use of compact map representations. This paper presents an approximative but highly effi...
متن کاملA Novel Measure of Uncertainty for Mobile Robot SLAM with Rao - Blackwellized Particle Filters
Rao–Blackwellized particle filters (RBPFs) are an implementation of sequential Bayesian filtering that has been successfully applied to mobile robot simultaneous localization and mapping (SLAM) and exploration. Measuring the uncertainty of the distribution estimated by a RBPF is required for tasks such as information gain-guided exploration or detecting loop closures in nested loop environments...
متن کامل